Name _____

Lab Section _____

PIC – Serial Peripheral Interface (SPI) to Digital Pot

Introduction: SPI is a popular synchronous serial communication protocol that allows ICs to communicate over short distances (PCB level communication). In this lab you will investigate using the Serial Peripheral Interface (SPI) bus to communicate with a peripheral that is external to the microcontroller.

Lab Requirements:

 Demonstrate the use of SPI communication to control the wiper position of a digital potentiometer. Connect the digital potentiometer as a programmable attenuator and show how you can control the amplitude of a 5Vpp (0 to 5V) sine wave by sending SPI commands.

Demo Check (JK)_____

About Serial Peripheral Interface:

SPI is a full-duplex synchronous serial communication protocol for data transfer between integrated circuits on a PCB. The protocol uses a master/ slave relationship where the master initiates all data transfers and generates the data synchronization clock. The standard bus connections are a Serial Clock (SCK), Master-Out-Slave-In (MOSI), Master-In-Slave-Out (MISO) and an active low Slave Select (nSS). Each slave device has its own Slave Select (nSS) signal which dictates when the device is participating in bus transfers. A typical connection diagram is shown below:

Figure 1 - SPI Connection Diagram

The SPI protocol operates as a shift register where data is transferred from the master to the slave and from the slave to the master at the same time. The data is shifted one bit at a time on the SCK. Unfortunately, there is no standardization on the clock edge for data shift or on the clock polarity so four different modes are possible. When connecting to a new peripheral it is important to study the waveform timing diagram to determine the clock polarity and phase.

Figure 2 - SPI Shift Register

Before a data transfer begins the master must assert the nSS signal by driving it low. Then the data will be exchanged one bit at a time between the master and the slave. The Data Transfer diagram below illustrates a Mode 3 transfer where the SCK idles high and data is valid on the rising edge of the SCK. At the end of the data transfer the nSS signal is brought high to deselect the peripheral.

Figure 3 - SPI Data Transfer

Most modern microcontrollers contain dedicated hardware to implement a master or slave peripheral interface. In the PIC family of microcontrollers this functionality is located in the Master Synchronous Serial Port (MSSP) Module. The MSSP is capable of being configured to implement either the SPI or I2C bus protocol. The hardware can be configured to operate as either a master or as a slave device. Today we will be setting up the MSSP for SPI Master Mode operation.

Figure 4 - MSSP SPI Block Diagram

REGISTER 29-2: SSP1CON1: SSP CONTROL REGISTER 1

R/C/HS-0/0	R/C/HS-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
WCOL	SSPOV ⁽¹⁾	SSPOV ⁽¹⁾ SSPEN CKP			SSPM				
bit 7	•			1			bit 0		
Legend:									
R = Readable bit		W = Writable bit		U = Unimplement	ted bit, read as '0'				
u = Bit is unchange	ed	x = Bit is unknown	1	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is cleared		HS = Bit is set by	hardware	C = User cleared			
bit 7	WCOL: Write Co 1 = The SSP1B 0 = No collision	llision Detect bit (Tri UF register is written	ansmit mode only while it is still trans	y) smitting the previous	word (must be cleare	ed in software)			
bit 6	SSPOV: Receive In SPI mode: 1 = A new byte i Overflow ca setting over SSP18UEr 0 = No overflow In I ² C mode: 1 = A byte is re (must be cl 0 = No overflow	 SSPOV: Receive Overflow Indicator bit⁽¹⁾ In SPI mode: 1 = A new byte is received while the SSP1BUF register is still holding the previous data. In case of overflow, the data in SSP1SR is lost. Overflow can only occur in Slave mode. In Slave mode, the user must read the SSP1BUF, even if only transmitting data, to avoid setting overflow. In Master mode, the overflow bit is not set since each new reception (and transmission) is initiated by writing to the SSP1BUF register (must be cleared in software). 0 = No overflow In IC mode: In IC mode: I = A byte is received while the SSP1BUF register is still holding the previous byte. SSPOV is a "don't care" in Transmit mode (must be cleared in software). Output: I = A byte is received while the SSP1BUF register is still holding the previous byte. SSPOV is a "don't care" in Transmit mode (must be cleared in software). Output: I = A byte is received while the SSP1BUF register is still holding the previous byte. SSPOV is a "don't care" in Transmit mode (must be cleared in software). Output: Output: I = A byte is received while the SSP1BUF register is still holding the previous byte. SSPOV is a "don't care" in Transmit mode (must be cleared in software). Output: Output: D = No overflow D = No overf							
bit 5	SPER: Synchronous Serial Port Enable bit In both modes, when enabled, the following pins must be properly configured as input or output In SPI mode: 1 = Enables serial port and configures SCK, SDO, SDI and SS as the source of the serial port pins ^[2] 0 = _ Disables serial port and configures these pins as I/O port pins In I ² C [™] mode: 1 = Enables are along the serial port and configures the SDA and SCL pins as the source of the serial port pins ^[3] 0 = _ Disables serial port and configures the SDA and SCL pins as the source of the serial port pins ^[3]								
bit 4	 □ = Disables serial port and configures these pins as I/O port pins CKP: Clock Polarity Select bit In SPI mode: I = Idle state for clock is a high level □ I²C[™] Siave mode: SCL release control I = Enable clock 0 = Holds clock stretch). (Used to ensure data setup time.) In I²C[™] Master mode: 								
bit 3-0	SSPM<3:0>: Syn 1111 = ² C [™] Sia 1110 = ² C [™] Sia 1101 = Reservec 1000 = Reservec 1011 = ² C [™] fia 1010 = SPI Mast 1000 = ² C [™] Ma 0111 = ² C [™] Sia 0110 = ² C [™] Sia 0100 = SPI Siaw 0100 = SPI Siaw 0100 = SPI Mast 0000 = SPI Mast 0000 = SPI Mast	achronous Serial Po ve mode, 10-bit add ye mode, 7-bit addi i wware controlled Ma er mode, clock = FC i ster mode, clock = CO e mode, clock = SC er mode, clock = SC er mode, clock = FC er mode, clock = FC er mode, clock = FC er mode, clock = FC	rt Mode Select b tress with Start a ess with Start an aster mode (slave bsC/(4 * (SSP1AL FOSC / (4 * (SSP tress ess tsSpin cor < pin, SS pin cor < pin, SS pin cor match/2 isC/64 isC/16 isC/4	its Ind Stop bit interrupt d Stop bit interrupts tidle) DD+1)) ⁽⁵⁾ 1ADD+1)) ⁽⁴⁾ http://disabled, SS ca ttrol enabled	ts enabled enabled an be used as I/O pi	n			

SSP1CON1 = 0b00110010;

To exchange data between the master and slave simply load the SSP data buffer then block until the transfer is finished. The code below also clears collision flag just in case it was set by a poorly timed write to the buffer. Don't forget assert the nSS line before calling the **SPI_SHIFT_8** function.

```
uint8_t SPI_SHIFT_8 (uint8_t data)
{
    SSP1CON1bits.WCOL = 0; // Clear Write Collision flag just in Case
    SSP1BUF = data; // Load Buffer with Data to Shift
    while (SSP1STATbits.BF == 0){} // Block until 8b transferred
    return (SSP1BUF); // Return Data/Dummy
}
```

Digital Potentiometer:

Digital potentiometers can be useful in circuits where you need to control an analog function with a microcontroller. For this lab you will be interfacing the PIC16F18324 to a MCP4151-503 (50k) Potentiometer using the SPI Interface. The MCP4151 is available in an 8-pin DIP package which forces an unusual SPI interface due to the low pin count.

The MCP4151 uses a shared bi-directional SDI/SDO line in order to fit both pins on the small package. R1 must be sized to not limit the SDO voltage below the logic threshold of the SDI of the MCP4151. Since there is not much value in reading the registers of the digital pot we will simplify our design by not using the MISO (SDI) connection.

Figure 6 – MCP4151 Bi-Directional Hardware Configuration

If we only care about setting the digital potentiometers wiper position we can simplify the connection as shown in figure 7 below. If we us this simplified method to interconnect the parts we must be careful to only issue write commands from the master.

Figure 7 - Simplified Connection Diagram

Data packets can be either 8 or 16 bits in length depending on the function. The general memory map for Microchip digital potentiometers is show in Figure 9 below. For the MCP4151 we will only be writing to address **00h** which will set the wiper position of the potentiometer. The pot has 257 steps so the range of values to be written to the Data payload is 0 to 256.

Figure 8 - MCP4151 Commands

TABLE (-2. WEINORT WAF AND THE SUFFORTED CONNINAND	TABLE 7-2:	MEMORY MAP	AND THE	SUPPORTED	COMMANDS
--	------------	------------	---------	-----------	----------

Address		Command	Data	SPI String (Binary)			
Value	Function	Command	(10-bits) ⁽¹⁾	MOSI (SDI pin)	MISO (SDO pin) ⁽²⁾		
00h	Volatile Wiper 0	Write Data	nn nnnn nnnn	0000 00nn nnnn nnnn	1111 1111 1111 1111		
		Read Data	nn nnnn nnnn	0000 11nn nnnn nnnn	1111 111n nnnn nnnn		
		Increment Wiper	_	0000 0100	1111 1111		
		Decrement Wiper	_	0000 1000	1111 1111		
01h	Volatile Wiper 1	Write Data	nn nnnn nnnn	0001 00nn nnnn nnnn	1111 1111 1111 1111		
		Read Data	nn nnnn nnnn	0001 11nn nnnn nnnn	1111 111n nnnn nnnn		
		Increment Wiper	_	0001 0100	1111 1111		
		Decrement Wiper	—	0001 1000	1111 1111		
02h	Reserved	-	_	_	_		
03h	Reserved	-	_	—	—		
04h	Volatile	Volatile Write Data		0100 00nn nnnn nnnn	1111 1111 1111 1111		
	TCON Register	Read Data	nn nnnn nnnn	0100 11nn nnnn nnnn	1111 111n nnnn nnnn		
05h	Status Register	Read Data	nn nnnn nnnn	0101 11nn nnnn nnnn	1111 111n nnnn nnnn		
06h-0Fh	Reserved	_	_	_	_		

Note 1: The Data Memory is only 9-bits wide, so the MSb is ignored by the device.

2: All these Address/Command combinations are valid, so the CMDERR bit is set. Any other Address/Command combination is a command error state and the CMDERR bit will be clear.

Figure 9 - MCP4151 Memory Map

Peripheral Pin Select:

For this lab you will need to map the SCK and SDO outputs using the PPS. If you want to try some SPI read commands by adding the resistor in the connection diagram you will also need to map the SDI input to a pin. When mapping peripheral inputs use table 12-1 to determine the register name for the peripheral function then associate the peripheral with the desired pin using the data in 12-8.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page	
PPSLOCK	—	_	—	—	—	—	_	PPSLOCKED	142	
INTPPS	—	_	_		INTPPS<4:0>					
T0CKIPPS	—	-	_			T0CKIPPS«	<4:0>		140	
T1CKIPPS	—	_	_		T1CKIPPS<4:0>					
T1GPPS	—	_	_		T1GPPS<4:0>					
CCP1PPS	—	—	-		CCP1PPS<4:0>					
CCP2PPS	—	_	-			CCP2PPS<	:4:0>		140	
CWG1PPS	—				(CWG1PPS-	<4:0>		140	
MDCIN1PPS	—				N	IDCIN1PPS	S<4:0>		140	
MDCIN2PPS	—		-		N	IDCIN2PPS	6<4:0>		140	
MDMINPPS	—	—	-		Ν	MDMINPPS	<4:0>		140	
SSP1CLKPPS	—	_	-		S	SP1CLKPP	S<4:0>		140	
SSP1DATPPS	—				S	SP1DATPP	S<4:0>		140	
SSP1SSPPS	—				SSP1SSPPS<4:0>					
RXPPS	—	_	_		RXPPS<4:0>					
TXPPS	—	—	—		TXPPS<4:0>					
CLCIN0PPS	—	_		CLCIN0PPS<4:0>					140	
CLCIN1PPS	—				CLCIN1PPS<4:0>					
CLCIN2PPS	—				CLCIN2PPS<4:0>					
CLCIN3PPS	—		-		0	CLCIN3PPS	<4:0>		140	
RA0PPS	—					RA0PPS </th <td>4:0></td> <td></td> <td>141</td>	4:0>		141	
RA1PPS	—	—	—			RA1PPS </th <td>4:0></td> <td></td> <td>141</td>	4:0>		141	
RA2PPS	—	—	—			RA2PPS </th <td>4:0></td> <td></td> <td>141</td>	4:0>		141	
RA3PPS	—					RB3PPS </th <td>4:0></td> <td></td> <td>141</td>	4:0>		141	
RA4PPS	—					RA4PPS </th <td>4:0></td> <td></td> <td>141</td>	4:0>		141	
RA5PPS	—					RA5PPS </th <td>4:0></td> <td></td> <td>141</td>	4:0>		141	
RC0PPS ⁽¹⁾	—					RC0PPS<	4:0>		141	
RC1PPS ⁽¹⁾	—					RC1PPS<	4:0>		141	
RC2PPS(1)	—	_	—			RC2PPS<	4:0>		141	
RC3PPS ⁽¹⁾	—	—	—			RC3PPS<	4:0>		141	
RC4PPS ⁽¹⁾	—	_	_			RC4PPS<	4:0>		141	
RC5PPS ⁽¹⁾	—	_	_			RC5PPS<	4:0>		141	

TABLE 12-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE PPS MODULE

12.8 Register Definitions: PPS Input Selection REGISTER 12-1: xxxPPS: PERIPHERAL xxx INPUT SELECTION

U-0	U-0	U-0	R/W-q/u	U-0	R/W-q/u	R/W-q/u	R/W-q/u			
—	-	—			xxxPPS<4:0>					
bit 7	·						bit 0			
Legend:										
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'						
u = Bit is unchanged x = Bit is unknown			nown	-n/n = Value	at POR and BO	R/Value at all c	ther Resets			
'1' = Bit is se	'1' = Bit is set '0' = Bit is cleared			q = value de	pends on periph	eral				
bit 7-5	Unimplemen	ted: Read as '	0'							
bit 4-0	xxxPPS<4:0	>: Peripheral x	xx Input Selec	tion bits						
11xxx = Reserved. Do not use.										
	1011x = Res 10101 = Peri 10100 = Peri 10011 = Peri	erved. Do not pheral input is pheral input is pheral input is	use. RC5 ⁽¹⁾ RC4 ⁽¹⁾ RC3 ⁽¹⁾							
	10010 = Peri 10001 = Peri 10000 = Peri	pheral input is pheral input is pheral input is	RC1 ⁽¹⁾ RC0 ⁽¹⁾							
	01xxx = Reserved. Do not use.									
	0011x = Res 00101 = Peri 00100 = Peri 00011 = Peri 00010 = Peri 00001 = Peri 00000 = Peri	erved. Do not i pheral input is pheral input is pheral input is pheral input is pheral input is pheral input is	use. RA5 RA4 RA3 RA2 RA1 RA0							

Map the **SDO** and **SCK** to the I/O that you want to use for the SPI bus.

REGISTER 12-2: RxyPPS: PIN Rxy OUTPUT SOURCE SELECTION REGISTER

U-0	U-0	U-0	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u		
_	_	_			RxyPPS<4:0>				
bit 7		1			-		bit C		
Legend:									
R = Reada	able bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
u = Bit is u	unchanged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is	set	'0' = Bit is clea	ared						
bit 7-5	Unimplemen	ted: Read as '	D'						
bit 4-0	RxyPPS<4:0	>: Pin Rxy Out	put Source S	election bits					
	11111 = Rxy	source is DSN	I						
	11110 = Rxy	source is CLK	R						
	11101 = Rxy	source is NCC)						
	11100 = Rxy	source is TMR	0						
	11011 = Res	erved							
	11010 = Res	erved	(0.0.4 (1)						
	11001 = Rxy	source is SDU	(SDA ⁽¹⁾						
	10111 - Rxy	source is SCR	130L ⁽²⁾						
	10111 = Rxy	source is C10	UT						
	10101 = Rxv	source is DT ⁽¹)						
	10100 = Rxy	source is TX/C	K ⁽¹⁾						
	01101 = Rxy	source is CCP	2						
	01100 = Rxy	source is CCP	1						
	01011 = Rxy	source is CW0	91D ⁽¹⁾						
	01010 = Rxy	source is CW0	G1C ⁽¹⁾						
	01001 = Rxy	source is CW0	61B ⁽¹⁾						
	01000 = Rxy	source is CW0	S1A ⁽¹⁾						
	00111 = Res	erved							
	00110 = Res	erved							
	00101 - RXy	source is CLC	2001 10UT						
	00100 = Rxy	source is PW/	1601						
	00010 = Rxy	source is PWM	15						
	00001 = Res	erved							
	00000 = Rxy	source is LAT>	(y						
Note 1:	TRIS control is over	erridden by the	peripheral as	required.					
2:	PIC16(L)F18323 c	only.							
		-							