Name

Lab Section

PIC — Serial Peripheral Interface (SPI) to Digital Pot Lab 6

Introduction: SPlis a popular synchronous serial communication protocol that allows
ICs to communicate over short distances (PCB level communication). In this lab you will
investigate using the Serial Peripheral Interface (SPI) bus to communicate with a
peripheral that is external to the microcontroller.

Lab Requirements:

1. Demonstrate the use of SPI communication to control the wiper position of a
digital potentiometer. Connect the digital potentiometer as a programmable
attenuator and show how you can control the amplitude of a 5Vpp (0 to 5V) sine
wave by sending SPI commands.

Demo Check (JK)

About Serial Peripheral Interface:

SPl is a full-duplex synchronous serial communication protocol for data transfer
between integrated circuits on a PCB. The protocol uses a master/ slave relationship
where the master initiates all data transfers and generates the data synchronization
clock. The standard bus connections are a Serial Clock (SCK), Master-Out-Slave-In
(MOSI), Master-In-Slave-Out (MISO) and an active low Slave Select (nSS). Each slave
device has its own Slave Select (nSS) signal which dictates when the device is
participating in bus transfers. A typical connection diagram is shown below:

cpiof—253
cpiof—3=52
grio}—=&1
<ot le—MisO
spol—Mos!
sck b—scK
v 3 , v - I
SCK SDI SDO S SCK SDI SDO SS SCK SDI SDO SS
SPI Master SPI Slave 1 SPI Slave 2 SPI Slave 3

Figure 1 - SPI Connection Diagram

The SPI protocol operates as a shift register where data is transferred from the master
to the slave and from the slave to the master at the same time. The data is shifted one
bit at a time on the SCK. Unfortunately, there is no standardization on the clock edge
for data shift or on the clock polarity so four different modes are possible. When
connecting to a new peripheral it is important to study the waveform timing diagram to
determine the clock polarity and phase.

Master Slave
>
|0|1|2|3T|l4|5|6|7| MOS| =I0|1|2|3T|14I5|6|7|
t MISO |

ss 1,

Figure 2 - SPI Shift Register

Before a data transfer begins the master must assert the nSS signal by driving it low.
Then the data will be exchanged one bit at a time between the master and the slave.
The Data Transfer diagram below illustrates a Mode 3 transfer where the SCK idles high
and data is valid on the rising edge of the SCK. At the end of the data transfer the nSS
signal is brought high to deselect the peripheral.

SS \ [

SCK | VY VY VY Y A Y R Y B |

SDO (mosy—{ Jwmsb OUTX x x X X x XLSbOUT)—

SDI (miso) —— wsoin | 1 | | | | | tsom —

MODE 3
Figure 3 - SPI Data Transfer

Most modern microcontrollers contain dedicated hardware to implement a master or
slave peripheral interface. In the PIC family of microcontrollers this functionality is
located in the Master Synchronous Serial Port (MSSP) Module. The MSSP is capable of
being configured to implement either the SPI or 12C bus protocol. The hardware can be
configured to operate as either a master or as a slave device. Today we will be setting
up the MSSP for SPI Master Mode operation.

< > Data Bus
Read ﬁ% Write
Write with Data to Send
SSP1BUF Re Read to Get Received Data
SDI v
MISO —I}—» SSP1SR Reg -
‘ 5
sSDO bit 0 t Shift
sSs
Control
Not Used @ e —\¢“ 2 (CKP, CKE)
Kt Meds Clock Select
Set Clock
Edge Polarity and Phase
Select (SPI Mode)
SSPM<3:0>
4 4(T2_match)
Scr P ler | T
Edge rescaler | TOSC
SCK Selgct 416 64 Set SCK Rate
Baud Rate
Generator
TRIS bit (SSP1ADD)

Set TRIS as Output

Figure 4 - MSSP SPI Block Diagram

REGISTER 29-2: SSP1CON1: SSP CONTROL REGISTER 1

RICHS-0/0 RIC/HS-00 RAW-0/0 RAN-0/0 RAW-DVD RAW-0/0 RAN-0/0 RAW-OVD
wecor | sspoul [sspen [ckr | SSPM=30>
bit 7 bit 0
Legend:
R. = Readable bit W = Winitable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit iz unknown -nin =Value at POR and BOR/Malue at all other Resets
1" = Bit iz gat ‘0" = Bit is cleared HS = Bit is &t by hardware C = User clearad
bit 7 WCOL: Write Collision Detect bit (Transmit mode only)
1= The SSP1BUF register is written while it is still transmitting the previous word (must be deared in softweare)
7= No collision
bit 6 SSPOV: Receive Overflow Indicator biti)
In 5Pl mode:

1= Anewhyteis received while the SSP1BUF registeris still halding the previous data. In case of overflow, the data in SSP15R s lost.
Owerflow can onty occur in Slave mode. In Slave mode, the user must read the SSP1BUF, even if only transmitting data, to avoid
setting overflow. In Master mode, the overflow bit is not set since each new reception (and transmission) is inifiated by writing to the
S5P1BUF register (must be cleared in software).

1= Nooverflow

In 1°C mode:

1= Abyte is received while the SSP1BUF register is still helding the previous byte. SSPOY is a “don't care” in Transmit mode
(must be cleared in software).

1= Nooverflow

hits SSPEM: Synchronous Serial Port Enabile bit
In both moedes, when enabled, the following pins must be properly configured as input or output
n SPlmade-

1= Enables serial port and configures SCK, SDO, SDI and 55 as the source of the serial port pinst?)

1 = Disables serial port and configures these pins as I/O port pins
™)

1= Enables the seral port and configures the SDA& and SCL pins as the source of the serial port pinst®)
1= Disables serial port and configures these pins as IO port pins
bit 4 CKP: Clock Polarity Select bit

In 5Pl mode:
1 = |dle state for clock is a high level

1 = |dle state for clock is a low level

In EC™ Siave mode:

SCL release control

1 = Enable clock

1 = Holds clock low (clock siretch). {Used to ensure data setup time.)
In 2C™ Master mode:

Unused in this mode

bit 3-0 SSPM<3:0>: Synchronous Serial Port Mode Select bits
1111 = 2C™ Slave mode, 10-bit address with Start and Stop bit intermupts enabled
EC™ Slave mode, 7-bit address with Start and Stop bit intermupts enabled
Reserved
Reserved
I2C™ firmware controlled Master mode (slave idlz)
5Pl Master mode, clock = FOSC/(4 * (SSP1ADD+1))®
Reserved
12C™ Master mode, clock = FOSC/ (4 * (SSP1ADD+1))14
I2C™ Slave mods, 10-bit address
ZC™ Slave mode, 7-bit address .
5Pl Slave mode, clock = SCK pin, S5 pin control disabled, 55 can be used as VO pin
5Pl Slave mode, clock = SCK pin, SS pin control enabled
SPI Master mode, clock = T2 _match/2
5P| Master mode, clock = Fosc/e4
5Pl Master mode, clock = FOsC/ME
0 = SPI Master mode, clock = FOsc/d

SSP1CON1 = 0b00110010;

To exchange data between the master and slave simply load the SSP data buffer then
block until the transfer is finished. The code below also clears collision flag just in case it
was set by a poorly timed write to the buffer. Don’t forget assert the nSS line before
calling the SPI_SHIFT_8 function.

uint8_t SPI_SHIFT_8 (uint8_t data)
{

SSP1CON1bits.WCOL = 0; // Clear Write Collision flag just in Case
SSP1BUF = data; // Load Buffer with Data to Shift

while (SSP1STATbits.BF == 0){} // Block until 8b transferred

return (SSP1BUF); // Return Data/Dummy

Digital Potentiometer:

Digital potentiometers can be useful in circuits where you need to control an analog
function with a microcontroller. For this lab you will be interfacing the PIC16F18324 to
a MCP4151-503 (50k) Potentiometer using the SPI Interface. The MCP4151 is available
in an 8-pin DIP package which forces an unusual SPI interface due to the low pin count.

csg1 80 Vpp
SCKg2 s— 7 POB
spysbo 03 g—az POW
Veg 04 50 POA

PDIP, SOIC, MSOP

Figure 5 - MCP4151 Pinout

The MCP4151 uses a shared bi-directional SDI/SDO line in order to fit both pins on the
small package. R1 must be sized to not limit the SDO voltage below the logic threshold
of the SDI of the MCP4151. Since there is not much value in reading the registers of the
digital pot we will simplify our design by not using the MISO (SDI) connection.

Host MCP41X1

Controller
SDI/SDO
SDO s
SDI R?
h ' SDO
SCK . |sck
1/ (1) | cs
L

Figure 6 — MCP4151 Bi-Directional Hardware Configuration

If we only care about setting the digital potentiometers wiper position we can simplify
the connection as shown in figure 7 below. If we us this simplified method to
interconnect the parts we must be careful to only issue write commands from the
master.

PIC16F18324 MCP4151
SDO MOSI »| spispo
SCK SCLK »| sck
GPIO SS | cs

Figure 7 - Simplified Connection Diagram

Data packets can be either 8 or 16 bits in length depending on the function. The general
memory map for Microchip digital potentiometers is show in Figure 9 below. For the
MCP4151 we will only be writing to address 00h which will set the wiper position of the
potentiometer. The pot has 257 steps so the range of values to be written to the Data
payload is 0 to 256.

16-bit Command

8-bit Command
M

e

r Command Byte 3 - Command Byte Data Byte A
" NG SR
A[A|A|A|C|C|D|D AlAlA|A|C|C|D|D|D D|D|D|D|D|D Command
DID|D|D{1|0|9|8 DD(D(D{1|0]|9|8]|7 5(4|3|2|1|0 Bits
3(2(|1]0 312|1]|0 cec
—A N . J a0
Memory Data Memory T Data 0 0 =Write Data
Address Bits Address Bits 0 1=INCR
Command Command I 0=DECR
Bits Bits I 1=Read Data
Figure 8 - MCP4151 Commands
TABLE 7-2: MEMORY MAP AND THE SUPPORTED COMMANDS
Address Data SPI String (Binary)
Command v (1)
Value Function (10-bits) MosI (SDI pin) MISO (SDO pin) 2
00h Volatile Wiper 0 Write Data nn nnnn nnnn 0000 00nn nnnn nnnn 1111 111 1111 1111
Read Data nn nnnn nnnn 0000 11nn nnnn nnnn 1111 111n nnnn nnnn
Increment Wiper — 0000 0100 1111 1111
Decrement Wiper — 0000 1000 1111 1111
01h Volatile Wiper 1 Write Data nn nnnn nnnn 0001 00nn nnnn nANn 1111 111 1111 1111
Read Data nn nnnn nnnn 0001 11nn nnnn nnnn 1111 111n nnnn nnnn
Increment Wiper —_ 0001 0100 1111 1111
Decrement Wiper — 0001 1000 1111 1111
02h Reserved — — — —
03h Reserved — — — —
04h Volatile Write Data nn nnnn nnnn 0100 00nn nnnn nnnn 1111 111 111 111
TCON Register | Read Data nn nnnn nnnn 0100 11nn nnnn nnnn 1111 1110 nnnn nnnn
05h Status Register Read Data nn nnnn nnnn 0101 11nn nnnn nnnn 1111 111n nnnn nnnn
06h-0Fh | Reserved — — — —
Note 1: The Data Memory is only 9-bits wide, so the MSb is ignored by the device.

2:

All these Address/Command combinations are valid, so the CMDERR bit is set. Any

combinaticn is a command error state and the CMDERR bit will be clear.

Figure 9 - MCP4151 Memory Map

other Address/Command

Peripheral Pin Select:

For this lab you will need to map the SCK and SDO outputs using the PPS. If you want to
try some SPI read commands by adding the resistor in the connection diagram you will

also need to map the SDI input to a pin. When mapping peripheral inputs use table 12-1
to determine the register name for the peripheral function then associate the peripheral

with the desired pin using the data in 12-8.

TABLE 12-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE PPS MODULE
Name Bit7 Bit 6 Bit 5 Bit 4 Bit3 Bit 2 Bit 1 Bit 0 Register
on page

PPSLOCK — — — — — — — PPSLOCKED | 142
INTPPS — — — INTPPS<4-0> 140
TOCKIPPS — — — TOCKIPPS<4:0> 140
TICKIPPS — — — TICKIPPS<4:0> 140
TIGPPS — — — T1GPPS<4:0> 140
CCP1PPS — — — CCP1PPS<4:0> 140
CCPZPPS — — — CCP2PPS<4:0> 140
CWGIPPS — — — CWG1PPS<4:0> 140
MDCIN1PPS — — — MDCIN1PPS<4:0> 140
MDCIN2PPS — — — MDCIN2PPS<4:0> 140
MDMINPPS — — — MDMINPPS<4:0> 140
SSP1CLKPPS — — — SSP1CLKPPS<4:0> 140
SSP1DATPPS — — — SSP1DATPPS<4:0> 140
SSP1SSPPS — — — SSP1SSPPS<4:0> 140
RXPPS — — — RXPPS<4:0> 141
TXPPS — — — TXPPS<4:0> 140
CLCINOPPS — — — CLCINOPPS<4:0> 140
CLCINTPPS — — — CLCINIPPS<40> 140
CLCIN2PPS — — — CLCIN2PPS<4:0> 140
CLCIN3PPS — — — CLCIN3PPS<40> 140
RAOPPS — — — RAOPPS<4:0> 141
RA1PPS — — — RA1PPS<4:0> 141
RAZPPS — — — RA2PPS<4:0> 141
RA3PPS — — — RB3PPS<4:0> 141
RA4PPS — — — RA4PPS<4:0> 141
RAGPPS — — — RAGPPS<4:0> 141
RCOPPSH) — — — RCOPPS<4:0> 141
RGC1PPS™ — — - RC1PPS<4:0> 141
RC2PPSH) — — — RC2PPS<4:0> 141
RC3PPSH) — — — RC3PPS<4:0> 141
RC4pPpsi! — — — RC4APPS<4:0> 141
RCEPPS — = = RCAEPPS<4:0> 141

12.8 Register Definitions: PPS Input Selection

REGISTER 12-1:

xxXPPS: PERIPHERAL xxx INPUT SELECTION

U-0

U-0 u-0

R/W-g/u u-0

RAW-g/u R/W-q/u R/W-q/u

XxxPPS<4:0>

bit 7

bit 0

Legend:

“1"=Bitis set

R = Readable bit
u = Bit is unchanged

W = Writable bit
x = Bit is unknown
‘0" = Bit 15 cleared

U = Unimplemented bit, read as ‘0
-n/n = Value at POR and BOR/Value at all other Resets
q = value depends on peripheral

bit 7-5
bit 4-0

Unimplemented: Read as "0’

xxxPP&<4:0>: Peripheral xxx Input Selection bits

11lxxx = Reserved. Do not use.

1011x = Reserved. Do not use.

10101 = Peripheral input is rcs(M
10100 = Peripheral input is R4
10011 = Peripheral input is rca
10010 = Peripheral input is rc2(M
10001 = Peripheral input is Rrc1M
10000 = Peripheral input is rcoM

01xxx = Reserved. Do not use

11z = Reserved. Do not use.
1 = Peripheral input is RAS
00 = Peripheral input is RA4
00011 = Peripheral input is RA3
00010 = Peripheral input is RA2
00001 = Peripheral input is RA1
00000 = Peripheral input is RAO

Map the SDO and SCK to the 1/O that you want to use for the SPI bus.

REGISTER 12-2:

RxyPPS: PIN Rxy OUTPUT SOURCE SELECTION REGISTER

‘1" =Bitis set

u = Bit is unchanged

U-0 u-0 uU-0 R/W-0/u R/W-0/u R/W-0/u RMW-0/u R/W-0/u
= = = RxyPPS<4:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

x = Bit is unknown
‘0’ = Bit is cleared

-n/n = Value at POR and BOR/Value at all other Resets

bit 7-5
bit 4-0

Note 1:

Unimplemented: Read as ‘0’

RxyPPS<4:0>: Pin Rxy Output Source Selection bits

11111 = Rxy source is DSM
11110 = Rxy source is CLKR
11101 = Rxy source is NCO
11100 = Rxy source is TMRO
11011 = Reserved

11010 = Reserved

11001 = Rxy source is sDo/SDAN
11000 = Rxy source is sckrscLM
10111 = Rxy source is C20UT@
10110 = Rxy source is C10UT
10101 = Rxy source is DT
10100 = Rxy source is TX/CK

01101 = Rxy source is CCP2
01100 = Rxy source is CCP1
01011 = Rxy source is CWG1 M
01010 = Rxy source is cwa1ct!
01001 = Rxy source is CWG1 B
01000 = Rxy source is cWG1AM

00111 = Reserved

00110 = Reserved

00101 = Rxy source is CLC20UT
00100 = Rxy source is CLC10UT
00011 = Rxy source is PWM6
00010 = Rxy source is PWM5
00001 = Reserved

00000 = Rxy source is LATxy

2: PIC16(L)F18323 only.

TRIS control is overridden by the peripheral as required.

