
Name __________________________

Lab Section _____________________

 PIC – Analog Voltage to PWM Duty Cycle Lab 5

Introduction: In this lab you will convert an analog voltage into a pulse width
modulation (PWM) duty cycle. The source of the analog voltage will be the trim pot
voltage divider attached to RA2/ANA2 (pin 11) of your PIC Dev 14 board. The pulse
width modulation output will drive the LED connected to RC5 (pin 5) so you can monitor
the PWM duty cycle as the brightness of the LED.

Lab Requirements:

1. Demonstration of LED Dimmer Control using the analog to digital converter
(ADC) and pulse width modulation (PWM).

 Demo Check (JK)______

Analog to Digital Converter:
The PIC16F18324 has a 10-bit analog to digital converter that is multiplexed to 11
external pins as well as a number of internal voltages. To sample an external signal with
the ADC you must tristate the pin using the TRIS register and specify the pin as an
analog input by configuring the ANSEL register. To route a signal into the ADC module
the CHS bits of the input MUX must be set to the corresponding channel. For some
applications the full 10-bit conversion is not needed and 8-bits of resolution may be
adequate and more efficient due to the microcontroller’s 8-bit architecture. We will
discuss using the ADC in both 8-bit and 10-bit modes in the lab. To store a 10-bit result
requires two output registers ADRESH and ADRESL where the conversion result can be
either left or right justified by setting the ADFM bit. Other settings that will need to be
configured are the positive (ADPREF) and negative (ADNREF) voltage references and the
ADC clock source. Take a look at Figure 1 on the next page to understand the basic
structure ADC module.

A timer interrupt can be a convenient way to schedule an analog to digital conversion.
You can use your code from last week’s lab to configure TMR0 to provide a 10ms
interrupt interval which will provide a sampling rate of around 100Hz. To start a
conversion the GO/DONE bit is asserted and when the conversion has finished the
GO/DONE bit will be automatically cleared by the module.

Figure 1 A2D Converter Module

The first step in using the A2D converter is to specify a pin as an analog input. This is
typically done in the initialization sequence since it is unlikely that a pin would change
from an analog input to digital functionality at runtime. Set the port pin direction as an
input using the TRIS register and configure the pin as analog using the ANSEL register.

 The configuration of the ADC converter in the PIC16F18324 is handled in two registers;
ADCON0 and ADCON1. For this lab, both of these registers can be configured during
initialization and the only bit you will need to assert at runtime is GO_DONE (ADGO).

The Analog Channel Select bits CHS <5:0> should be set to route the input from the port
pin into the analog to digital converter. Since the potentiometer is connected to
RA2/ANA2 (pin 11) the value should be “000010”. The ADON bit should be set to turn
the ADC on but the Go/nDONE bit should not be set at the same time that the converter
is being switched on. The Go/nDONE bit will be asserted later to start a conversion.

ADCON0 = 0b00001001;

The ADCON1 register is used to set the output format, the conversion clock, and the
ADC positive and negative reference voltages. The ADC produces a 10-bit result that is
stored in two 8-bit registers. The justification of the result can be set with the ADFM bit
as Illustrated in the figure below.

The recommended ADC conversion times are from 1-4us per bit. When operating with a
Fosc of 4MHz a suitable conversion clock (ADCS) would be either Fosc/4, Fosc/8 or
Fosc/16. For this lab the ADC reference voltages can be VDD and VSS.

ADCON1 = 0b01010000;

To start a conversion set the Go/nDONE bit (ADGO = 1;). The conversion result will be
ready when the Go/nDONE bit clears. You can wait for the conversion to finish by
testing the status of the Go/nDONE bit like the code below:

bsf ADCON0, GO_DONE ; Start Conversion
btfsc ADCON0, GO_DONE ; Conversion Done?
goto $-1 ; No, Test Again
movf ADRESH, W ; Yes, Put A2D result into W

Alternatively, you can start the conversion at the end of one interrupt service routine
and pickup the result at the start of the next. Using this method you will not need to
test the Go/nDONE bit if you provide enough time to guaranty that the conversion is
complete.

Pulse Width Modulation:
The PIC16f18324 microcontroller provides up to four dedicated 10-bit pulse width
modulation modules. Two are located in the Compare/Capture/PWM modules (CCP1
and CCP2) and two are dedicated PWM modules (PWM5 and PWM6). These modules
can each generate PWM signals of varying duty cycles but the frequency of modulation
is fixed to one value because they share a common timer (TMR2). Just like with the A2D
converter, sometimes it is sufficient to use the PWM module with only 8-bits, in which
case you can take the ADC result (ADRESH) and place it into the PWM duty cycle register
(PWMxDCH). We will discuss the consequences of using the PWM in 8-bit mode and 10-
bit mode in the lab.

To initialize the PWM module, you will need to configure several registers.

 T2CON – Timer2 Control Register

 PR2 – Timer2 Period Register

 PWMxCON – PWM Control Register

 PWMxDCH – PWM Duty Cycle High Bits

 PWMxDCL – PWM Duty Cycle Low Bits

Timer 2 is the clock source for the PWM module and can be configured to set the
frequency of modulation by setting the prescaler and match register PR2. For today’s
lab turn on timer 2 and load the match register with 0xFF.

 PR2 = 0xff;
 TMR2ON = 1;

The PWMxCON Control Register (PWM5CON) will need to be configured to turn the
PWM on and set the output polarity.

For active high PWM operation the PWM5CON can be configured as follows:

PWM5CON = 0b10000000;

To set the PWM duty cycle you will write to the PWM5DCH and PWM5DCL registers.

Peripheral Pin Select:
The PIC16f18324 microcontroller contains a peripheral pin select (PPS) module which
allows you to connect digital peripherals to the chips I/O pins. This is a very useful
feature because it allows you to take advantage of the devices wide variety of
peripherals in low pin count parts.

Inputs are configured using the xxxPPS registers where xxx refers to the peripheral
name. Outputs are configured using the RxyPPS registers where xy refers to the pin
name.

It’s a good idea to lock PPS once setup so you can’t accidentally make changes after
initialization. The datasheet recommends disabling the output drivers before
configuration so to configure RC5 for PWM5 you might do something like the code
below:

 TRISC = 0xff; // Disable Output Drivers
 RC5PPS = 0b00010; // PWM5 on RC5
 PPSLOCK = 1;

