Name

Lab Section

PIC — Periodic Pulse with Timer and Interrupt Lab 4

Introduction: In last week’s lab you controlled the blinking rate (on/off cycle) of an LED
using a time wasting loop. The lab was a good way to get started working with the PIC
without learning about the microcontroller's peripherals. However the “time wasting”
method is an inefficient use of the PIC’s resources. In this week’s lab you will solve a
similar problem using one of the microcontroller’s built in timer modules. Your task is to
create a short periodic pulse by utilizing the microcontroller’s timer and interrupt
structure.

Lab Requirements:

1. Demonstration of a periodic pulse of a width equal to the last digit of your RedID
in uS. If your RedID ends in “0”, make a 10uS pulse. The pulse should repeat at a
10mS (+0.1mS) interval.

Demo Check (JK)

About the TIMER 0 Module:

The Timer 0 (TMRO) module provides a useful method of tracking time without creating
inefficient time wasting loops. TMRO can operate as either an 8-bit timer/counter with
a programmable period or as 16-bit timer/counter. The Prescaler provides a method for
slowing the timer count rate to give longer overflow or match cycles. For instance, if we
configure TMRO as an 8-bit timer without the Prescaler, the timer would overflow at the
following rate.

4 x28 =T,
/ Fosc OVERFLOW
When running the 16F18324 at 4MHz an 8-bit overflow cycle of TMRO would yield a
256uS delay as follows:
4/ x 28 = 256uS
4MHz
This is overflow cycle may be too frequent for many useful applications such as creating

a basic system tick scheduler. In order to consume longer durations of time we could
use the timer in 16-bit mode or utilize the timer prescaler or postscaler.

There are several ways to configure TMRO to generate an interrupt a desired interval.
One method is to run the timer in 8-bit mode using the prescaler and a programmed
period value so the Timer O Interrupt Flag (TOIF) is asserted on a match. To get started
study the 8-bit Timer 0 block diagram shown below:

\“
cLct 111
SOSC — 110
Reserved 101 | TocKPS<3:0>
LFINTOSC —— 100 _‘ | ﬁ
Prescal, 1 TO_match "
HFINTOSC ——— 011 — . TMROL rleSe@r ——=——— Peripherals
SYNC [0
Fosc/4 010) 10 TOOU1I'PS<3:0> TOIF
TOCKIPPS [~ Fosc/4 ’—>
1 001 COMPARATOR | Postscal } , »T0_out

(Inverted) ||~ TOASYNC
TOCKIPPS :)I;— 000 ‘J TO_match

TMRO High TKI\MRO
TOCS<2:0 Byte" D Q PPS 5
<2:0> /,*.‘
‘ L.‘_EL:IC" 4 _ RxyPPS
able cK Q

TMROH ‘

Figure 1 Block Diagram of TMRO 8-bit mode

The input to the timer/counter can be selected by setting the Timer 0 Clock Source bits
(TOCS<2:0>) in the TOCONL1 register. For today’s lab | sugest you configure the clock rate
for Fosc/4. Next you might want to slow the clock down by using the prescaler.

4/Fosc X Prescaler Ratio X 28 = ToyerrLow
If you select a prescaler ratio of 1:64 with a 4MHz clk in 8-bit mode an overflow will
happen every:

4/ Mpg X 64 % 28 = 16.384mS

To get closer to the 10mS interval we can reduce the size of the terminal count by
writing a match value to the TMROH register. When the TMRO count is equal to the
TMROH register the output will be asserted for one cycle and a new cycle will begin.

Y My X 64X (24+1) ~ 10mS

For detailed information about the registers associated with TMRO see section 25 of the
PIC16f18324 datasheet.

About Interrupts:

The usefulness of the timer modules in a microcontroller is greatly enhanced by its
ability to force an interrupt when the count overflow or match occurs. To enable
interrupts for a TMRO event, set the TMRO overflow interrupt enable bit (TMROIE) in the
PIEO register and the Peripheral Interrupt Enable (PEIE) and Global Interrupt Enable
(GIE) bits in the INTCON register.

TMROIF — ™ Wake-up
TMROIE — i (If in Sleep mode)

TTVOINTE — Y

—_
Peripheral Interrupts INTE — - B
) —
—

(TMR1IF) PIR1<0> ~ .] N
TMR1IE) PIE1<0> Y, OCIF — T Internupt
() 0 - IOCIE —] /

I to CPU
° °
. * Y
. o pA PEEE — J
PIRn<7>
PIER<7> :D GIE

Figure 2 Interrupt Logic

Interrupts on a Mid-Range 8-bit PIC microcontroller are very basic due to their single
interrupt vector address. To specify an interrupt using the XC8 compiler you create a
function using the interrupt qualifier. If you are using multiple interrupt sources it is
essential that you test for what caused the interrupt by performing interrupt source
checks.

void interrupt my_isr (void)

{ If (TMROIF && TMROIE) // Source Check for TMRO
{ TMROIF = 0; // Clear TMRO Flag
// Put my interrupt service code here
}
}

To shape the pulse you can use the NOP(); macro or the _delay(); function to make short
delays at a rate of Fosc/4. Some short delays may not be achieable using “C” and you
may need to write a little inline assembly.

In“C” In “Assembly”
LATC5=1; #asm
NOP(); bsf LATC,5
LATC5 = 0; nop

bcf LATC,5

#endasm

Registers:

Here are some registers you may be working with today. Open the Datasheet!

REGISTER 25-3: TOCONO: TIMERO CONTROL REGISTER 0

R/W-0/0 U-0 R-0 R/W-0/0 RIW-0/0 R/W-0/0 R/W-0/0 RAN-0/0
TOEN = TOOUT TO16BIT TOOUTPS<3:0>
bit 7 bit 0
REGISTER 25-4: TOCON1: TIMER0 CONTROL REGISTER 1
R/W-0/0 RW-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 RW-0/0
TOCS<2:0> TOASYNC TOCKPS<3:.0>
bit 7 bit 0
REGISTER 25-2: TMROH: TIMERO PERIOD REGISTER
RW-1/1 RW-1/1 R/W-1/1 RIW-1/1 R/W-1/1 RW-1/1 RIW-1/1 RAW-1/1
TMROH<T:0> or TMRO<15:6>
bit 7 bit 0
REGISTER 7-1: INTCON: INTERRUPT CONTROL REGISTER
R/W-0/0 RAW-0/0 U-0 U-0 u-0 U-0 U-0 R-1/1
GIE PEIE = = = = = INTEDG
bit 7 bit 0
REGISTER 7-2: PIEO: PERIPHERAL INTERRUPT ENABLE REGISTER 0
U-0 u-0 R/W/HS-0/0 R-0 u-0 u-0 U-0 RAW/HS-0/0
— — TMROIE IOCIE — — — INTE
bit 7 bit 0
REGISTER 7-7: PIR0: PERIPHERAL INTERRUPT STATUS REGISTER 0
U-0 U-0 RAW/HS-0/0 R-0 u-0 u-0 U-0 RAW/HS-0/0
= = TMROIF IOCIF = = = INTEID
bit 7 bit 0
REGISTER 11-18: TRISC: PORTC TRI-STATE REGISTER
R/W-1/1 RAW-1/1 R/W-1/1 RIW-1/1 RW-1/1 RW-1/1 RIW-1/1 RAW-1/1
TRISCT | TRISCE! TRISCS TRISCA4 TRISC3 TRISCZ TRISC1 TRISCO
bit 7 bit 0
REGISTER 11-19: LATC: PORTC DATA LATCH REGISTER
RMW-x/u RMW-xfu RMAW-x/u RAW-x/u RMW-x/u RAW-x/u RW-x/u RMNW-x/u
LATCT LATCEM LATCS LATC4 LATC3 LATC?2 LATC1 LATCO
bit 7 bit 0
PIC16F18324 Pinout:
Vop [1 14] Vss
RA5 []2 3 13|] RAQ/ICSPDAT
RA4[]3 3 12|] RA1/ICSPCLK
VPR/MCLRRA3[[4 % T[] RA2
Rc5[15 & 190Rco
RC4[|6 O 91 RC1
RC3[|7 o 8[| RC2

